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Abstract

This document presents a comprehensive look into the Black-Scholes-Merton
model, a cornerstone in quantitative finance. It explores the model’s theoret-
ical foundations, assumptions, and practical applications in options pricing.
This work aims to demonstrate a deep understanding of the model’s princi-
ples and its significance in financial markets, reflecting the knowledge gained
through rigorous study and mathematical rigor.
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1 Introduction and Setting the Context

1.1 Introduction to Options and Derivatives

Derivatives are financial instruments whose value is derived from an underlying asset
(e.g., stocks, bonds, commodities). Options, a type of derivative contract, grant the right
(but not the obligation) to buy or sell an asset at a specified strike price before or at
expiration.

Key Point: Options provide leverage and hedging benefits, making them
crucial in risk management.

1.2 Importance of Option Pricing Models

• Why We Need Models: Options have non-linear payoffs; we need a systematic
way to value them under uncertainty.

• Market Efficiency: A robust pricing model helps ensure fair market prices, reduce
arbitrage, and aid in financial decision-making (hedging, speculation, etc.).

Key Point: Without a solid pricing framework, markets can misprice risk,
leading to potential inefficiencies or arbitrage opportunities.

1.3 The Significance of the Black-Scholes Merton Model

The Black-Scholes-Merton model, published in 1973 by Fischer Black, Myron Scholes, and
Robert Merton, revolutionized option pricing by providing a closed-form solution for
European-style options. It forms the foundation of modern derivatives pricing and serves
as the basis for many extended or more sophisticated models (e.g., stochastic volatility,
jump-diffusion).

Key Point: Black-Scholes-Merton (BSM) gave the first widely-accepted,
mathematically rigorous method to price a European call or put, drastically
changing the landscape of finance.

2 Stochastic Processes & the Wiener Process

2.1 Stochastic Processes

A stochastic process is a sequence {Xt} of random variables indexed by t. In a financial
context, this represents how asset prices change randomly over time.

2.2 Random Walk → Continuous Limit

• Discrete random walk: Xt+1 = Xt + ϵt, where ϵt ∼ N (0, σ2)

• As ∆t → 0, this leads to the Wiener process (Brownian motion)
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2.3 Wiener Process (Brownian Motion)

1. Definition: Wt with W0 = 0, independent increments, and Wt −Ws ∼ N (0, t− s)

2. Differential Notation: dWt ∼
√
dt Z, where Z ∼ N (0, 1)

3. Key Property: E[dWt] = 0, Var(dWt) = dt

2.4 Finance Application

The Wiener process forms the foundation for continuous-time models in finance:

dSt = µSt dt+ σSt dWt (to come in GBM) (1)

This formulation is crucial in the Black–Scholes–Merton derivations.

3 Geometric Brownian Motion (GBM)

3.1 SDE for GBM

The Stochastic Differential Equation (SDE) for Geometric Brownian Motion is:

dSt = µSt dt+ σSt dWt, (2)

where:

• St: Stock price at time t

• µ: Drift (expected return)

• σ: Volatility

• Wt: Standard Wiener process

3.2 Rewrite in Relative Form

We can rewrite the SDE in relative form:

dSt

St

= µ dt+ σ dWt. (3)

3.3 Solution via Integration

Integrate both sides from 0 to t:∫ t

0

dSu

Su

=

∫ t

0

µ du+

∫ t

0

σ dWu. (4)

The left side becomes lnSt − lnS0.
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3.4 Log of St

Using Ito’s Lemma (see Part 4 for derivation details), we get:

lnSt − lnS0 = µt− 1

2
σ2t+ σWt. (5)

3.5 Closed-Form Expression

The closed-form solution for St is:

St = S0 exp
[(
µ− 1

2
σ2
)
t+ σWt

]
. (6)

3.6 Lognormal Distribution

lnSt is normally distributed with:

Mean = lnS0 +
(
µ− 1

2
σ2
)
t, (7)

Variance = σ2t. (8)

Therefore, St ∼ Lognormal(. . . ).

3.7 Relevance in Finance

• BSM Assumption: Stock prices follow GBM for continuous-time option pricing.

• Captures drift & volatility in a realistic, continuous manner.

4 Ito’s Lemma

4.1 General Statement

Let Xt follow:
dXt = a(Xt, t) dt+ b(Xt, t) dWt. (9)

For V (t,Xt), Ito’s Lemma states:

dV =

[
∂V

∂t
+ a

∂V

∂X
+ 1

2
b2
∂2V

∂X2

]
dt + b

∂V

∂X
dWt. (10)

4.2 Motivation

We often need d(ϕ(St)) for a function ϕ, e.g., ϕ(St) = ln(St) or an option payoff. Ordinary
differentiation fails because dWt has variance ∼ dt. The key is that an extra 1

2
b2 ∂2

∂X2 term
arises from the stochastic part.
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4.3 Derivation (Simplified Outline)

The idea is to expand V (t+∆t,Xt+∆t) with a Taylor series:

V (t+∆t,Xt+∆t) ≈ V +
∂V

∂t
∆t+

∂V

∂X
∆X + 1

2

∂2V

∂X2
(∆X)2 + . . . (11)

In stochastic terms:

∆X = a∆t+ b∆W, (∆W )2 ≈ ∆t. (12)

Collect terms in ∆t and ∆W . The limit as ∆t → 0 yields Ito’s formula.

4.4 Example: V = ln(St)

Suppose dSt = µSt dt+ σSt dWt. Then V (t, St) = ln(St). Compute partial derivatives:

∂V

∂S
=

1

St

,
∂2V

∂S2
= − 1

S2
t

. (13)

Plug into Ito’s Lemma:

d(lnSt) =

[
∂

∂t
(lnSt) + µ− 1

2
σ2

]
dt+ σ dWt =

(
µ− 1

2
σ2
)
dt+ σ dWt. (14)

4.5 Finance Context

Ito’s Lemma is essential for deriving option-pricing PDEs, risk-neutral valuation, and
other transformations (e.g., from St to lnSt, or from an asset price to an option payoff).

5 Risk-Neutral Valuation

5.1 Risk-Neutral Concept

The key idea is to price a derivative by taking the expected value of its discounted
payoff under a risk-neutral measure Q. In a no-arbitrage world with a constant
risk-free rate r:

Derivative Price at t = e−r(T−t) EQ[Payoff at T | Ft

]
. (15)

5.2 Girsanov’s Theorem (High-Level)

Girsanov’s Theorem changes the measure from the real-world measure P to the risk-
neutral measure Q. Under Q, the drift of the asset becomes r, i.e., µ is replaced by
r.

5.3 Risk-Neutral SDE for Stock Price

Original (real-world):
dSt = µSt dt+ σSt dW

P
t . (16)

Under risk-neutral Q:
dSt = rSt dt+ σSt dW

Q
t , (17)

where WQ
t is a Wiener process under Q.
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5.4 Discounted Asset Price is a Martingale

Define S̃t = e−rtSt. Under Q, S̃t evolves with zero drift (martingale property):

dS̃t = e−rtσSt dW
Q
t . (18)

This implies no free lunch: Expected growth under Q is exactly r, so the discounted
price has no drift.

5.5 Practical Formula

Derivative Value at time 0:

V0 = e−rT EQ[Payoff(ST )
]
. (19)

Example for a European call payoff max(ST −K, 0):

C0 = e−rT EQ[max(ST −K, 0)
]
. (20)

6 Derivation of the Black-Scholes PDE

6.1 Hedging Argument

Consider a derivative V (t, St). Hedge by shorting ∆ units of the underlying St. The
portfolio is:

Πt = V (t, St)−∆St. (21)

6.2 No-Arbitrage & Risk-Free Portfolio

Choose ∆ = ∂V
∂S

to eliminate exposure to dSt at first order. Then Πt should earn the
risk-free rate r if it’s truly riskless:

dΠt = rΠt dt. (22)

6.3 Dynamics of Πt

From Ito’s Lemma (Part 4) and the SDE for St under the risk-neutral measure (Part 5):

dV =
∂V

∂t
dt+

∂V

∂S
dSt +

1
2

∂2V

∂S2
(σ2S2

t ) dt, (23)

dSt = r St dt+ σ St dW
Q
t . (24)

Hence,
dΠt = dV −∆ dSt. (25)

6.4 Plug in ∆ = ∂V
∂S

Substitute into dΠt:

dΠt =
∂V

∂t
dt+ 1

2
σ2S2

t

∂2V

∂S2
dt︸ ︷︷ ︸

terms not canceled

+
∂V

∂S
dSt −∆ dSt︸ ︷︷ ︸
hedged out

. (26)

The dSt terms cancel out exactly.
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6.5 Equating to Risk-Free Growth

By no-arbitrage,
dΠt = rΠt dt = r

(
V −∆St

)
dt. (27)

Equate:
∂V

∂t
+ 1

2
σ2S2

t

∂2V

∂S2
= r

(
V − St

∂V

∂S

)
. (28)

6.6 Black-Scholes PDE

Rearrange:
∂V

∂t
+ r St

∂V

∂S
+ 1

2
σ2S2

t

∂2V

∂S2
− r V = 0. (29)

6.7 Interpretation

This is the core PDE for pricing a European-style option on a non-dividend-paying
stock. The next step (Part 7) shows transformation into a Heat Equation form.

7 Heat Equation Analogy

7.1 Black–Scholes PDE (from Part 6)

∂V

∂t
+ rS

∂V

∂S
+ 1

2
σ2S2∂

2V

∂S2
− rV = 0. (30)

7.2 Key Transformations

Change of variables:

τ = T − t (time to maturity), x = ln(S). (31)

Often set an ansatz, e.g.:
V (t, S) = e−αx−βt u(τ, x), (32)

where α and β are constants chosen to simplify terms (details vary by reference).

7.3 Derive PDE in τ, x

Compute partial derivatives of V w.r.t. t, S and substitute into the Black–Scholes PDE.
After careful algebra (using ∂x

∂S
= 1

S
, ∂x

∂t
= 0, etc.), you get a diffusion-like PDE for

u(τ, x).

7.4 Resulting ”Heat Equation” Form

Typical final form (simplified version):

∂u

∂τ
= 1

2
σ2∂

2u

∂x2
+
(
r − 1

2
σ2
)∂u
∂x

− r u. (33)

With further manipulations (and choosing α, β properly), this reduces to a standard
heat equation in variable τ .
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7.5 Significance

• Easier to Solve: Transforming into a heat/diffusion equation leverages well-known
solution methods.

• Analogy: Heat conduction in physics ↔ Option price diffusion in finance.

8 Black–Scholes Closed-Form Solution

8.1 European Call Option

Payoff at maturity T : max(ST −K, 0). Under the risk-neutral measure Q:

C0 = e−rT EQ[max(ST −K, 0)
]
. (34)

8.2 Lognormal Distribution of ST

If St follows
dSt = r St dt+ σ St dW

Q
t , (35)

then
ST = S0 exp

((
r − 1

2
σ2
)
T + σ

√
T Z

)
, Z ∼ N (0, 1). (36)

8.3 Standard Result via Heat Equation or Direct Integration

After solving the transformed PDE (Part 7), we get:

C0 = S0N(d1)−K e−rT N(d2), (37)

where

d1 =
ln
(
S0

K

)
+
(
r + 1

2
σ2
)
T

σ
√
T

, d2 = d1 − σ
√
T . (38)

N(·) is the cumulative distribution function of the standard normal distribution.

8.4 European Put Option

By Put-Call Parity or directly:

P0 = K e−rT N(−d2)− S0N(−d1). (39)

8.5 Intuition of d1, d2

• d1 relates to the z-score for the expected log price relative to strike.

• d2 = d1 − σ
√
T shifts for volatility/time.

8.6 Interpretation

• S0N(d1): ”Risk-adjusted” probability of finishing in the money under Q.

• K e−rT N(d2): Discounted strike payment, also under Q.

• This formula revolutionized derivative pricing (practical, closed-form).
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9 Greeks & Sensitivity Analysis

9.1 Greeks Overview

Purpose: Measure how the option value V changes with respect to parameters: S0

(underlying price), σ (volatility), r (interest rate), and t (time).

9.2 Delta ∆

Definition: ∆ = ∂V
∂S0

.
For a European Call (from Part 8):

∆call = N(d1). (40)

Interpretation: Approx. change in option price for a $1 change in the underlying.

9.3 Gamma Γ

Definition: Γ = ∂2V
∂S2

0
= ∂∆

∂S0
.

For a European Call:

Γ =
N ′(d1)

S0 σ
√
T
, where N ′(d1) =

1√
2π

e−
d21
2 . (41)

Interpretation: Measures how fast ∆ changes with S0.

9.4 Vega ν

Definition: ν = ∂V
∂σ

.
For a European Call:

ν = S0

√
T N ′(d1). (42)

Interpretation: Sensitivity to volatility changes.

9.5 Theta Θ

Definition: Θ = ∂V
∂t

(often expressed as ∂V
∂T

with T = time to maturity).
For a European Call (in terms of time to expiry T ):

Θ ≈ −S0N
′(d1)σ

2
√
T

− r K e−rT N(d2). (43)

Interpretation: Daily ”time decay” of the option value.

9.6 Rho ρ

Definition: ρ = ∂V
∂r
.

For a European Call:
ρ = K T e−rT N(d2). (44)

Interpretation: Sensitivity to interest rate changes.
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9.7 Practical Use

• Risk Management: Traders adjust hedge ratios, monitor Gamma exposure, etc.

• Scenario Analysis: Evaluate how an option’s value might shift if σ or S0 changes.

10 Numerical Methods

10.1 Why Numerical?

• Some derivatives (e.g., path-dependent) lack closed-form solutions.

• Approximate via computational methods.

10.2 Finite Difference Methods

• Discretize the Black–Scholes PDE in time and stock-price space.

• Schemes: Explicit, Implicit, Crank–Nicolson.

• Use boundary conditions (option payoff at expiry, behavior as S → 0 or S → ∞)
to iterate and find V .

10.3 Monte Carlo Simulations

• Simulate random paths under the risk-neutral measure:

St+∆t = St exp
[(
r − 1

2
σ2
)
∆t+ σ

√
∆t Z

]
, Z ∼ N (0, 1). (45)

• Calculate payoff for each path, discount, and average.

• Accuracy ↑ as number of paths ↑.

10.4 Practical Considerations

• Trade-off : more grid points / more paths → higher accuracy, but more compu-
tation.

• Widely used for exotic options where PDE approaches are complex.

11 Extensions of the Model

11.1 Dividend-Paying Stocks

If continuous dividend yield = q, then under Q:

dSt = (r − q)St dt+ σSt dW
Q
t . (46)

Black–Scholes Formula modifies to:

C0 = S0e
−qTN(d1)−Ke−rTN(d2), (47)
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where

d1 =
ln
(
S0

K

)
+
(
r − q + 1

2
σ2
)
T

σ
√
T

, d2 = d1 − σ
√
T . (48)

11.2 American Options

• Early Exercise possible (e.g., American put on non-dividend stock).

• No simple closed-form (except some special cases).

• Methods: Binomial Trees, Finite Differences with a free boundary condition.

11.3 Stochastic Volatility Models

Heston Model: Volatility follows its own SDE, e.g.,

dνt = κ(θ − νt) dt+ ξ
√
νt dW

ν
t . (49)

Addresses vol smile/skew not captured by constant σ.

11.4 Jump-Diffusion Models

Add jumps to the price dynamics (e.g., Merton jump model):

dSt = rSt dt+ σSt dW
Q
t + jumps. (50)

Useful for capturing large, discrete price moves.

11.5 Other Extensions

• Local Volatility: σ = σ(St, t).

• Interest Rate Models (Hull–White, etc.) for interest rate derivatives.

12 Practical Example

12.1 Given Parameters

• S0 = 100 (current stock price)

• K = 110 (strike)

• T = 1 year (time to maturity)

• r = 0.05 (risk-free rate)

• σ = 0.20 (volatility)

14
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12.2 Compute d1 and d2

d1 =
ln
(
S0

K

)
+
(
r + 1

2
σ2
)
T

σ
√
T

, d2 = d1 − σ
√
T . (51)

Plug in numbers:

d1 =
ln
(
100
110

)
+
(
0.05 + 0.5× 0.22

)
× 1

0.2
√
1

=
ln(0.9091) + 0.05 + 0.02

0.2

=
−0.0953 + 0.07

0.2

=
−0.0253

0.2
≈ −0.1265.

d2 = −0.1265− 0.2 ≈ −0.3265.

12.3 Find N(d1) and N(d2)

Use a standard normal CDF table or a calculator:

N(−0.1265) ≈ 0.4496, N(−0.3265) ≈ 0.3724.

Hence,
N(d1) = 1− 0.4496 = 0.5504, N(d2) = 0.3724 (corrected).

12.4 Plug into Black–Scholes Call Formula

C0 = S0N(d1)−Ke−rTN(d2). (52)

Compute each term:

S0N(d1) = 100× 0.5504 = 55.04,

Ke−rTN(d2) = 110 e−0.05×1 × 0.3724

≈ 110× 0.9512× 0.3724

≈ 110× 0.3544

≈ 38.98.

Hence,
C0 ≈ 55.04− 38.98 = 16.06.

12.5 Interpretation

• Call Price ≈ 16.06.

• Higher than naive expectation because there’s still a decent chance the stock could
finish above 110 in a year, plus time-value and volatility factors.
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13 Limitations of the Black–Scholes Model and Prac-

tical Implications

13.1 Assumptions vs. Real Markets

The Black–Scholes model makes certain assumptions that don’t fully match how real
markets work:

13.1.1 Constant Volatility

• The model assumes that volatility stays the same over time.

• In reality, volatility changes and depends on strike prices and expirations, creating
volatility smiles and skews.

13.1.2 No Transaction Costs

• The model assumes trading has no costs—no fees, bid–ask spreads, or slippage.

• In actual markets, these costs can be significant, especially during high volatility
or low liquidity.

13.1.3 Continuous Hedging

• It assumes traders can rebalance their positions continuously without any delays.

• But in real life, hedging happens at intervals (discrete), which can be costly and
lead to small risks.

13.1.4 No Jumps in Prices

• The model assumes stock prices move smoothly.

• Real prices can jump due to unexpected news or events, which this model doesn’t
capture.

13.2 Practical Challenges

These assumptions can create real-world issues:

13.2.1 Mispricing

Options may be incorrectly priced, and the Greeks (like Delta and Vega) may not always
be accurate. This can lead to poor hedging strategies and unexpected losses.

13.2.2 Adjustments by Traders

Traders often use implied volatility surfaces (adjustments for market realities) or
adopt more advanced models to deal with these gaps.
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13.3 Extensions to Improve the Model

To address these problems, some improved versions of the Black–Scholes model have been
developed:

13.3.1 Stochastic Volatility Models

These models allow volatility to change over time. For example, the Heston model is
popular in practice.

13.3.2 Local Volatility Models

These use market data to adjust volatility based on the stock price and time, providing
more accurate pricing.

13.3.3 Jump-Diffusion Models

Models like the Merton Jump-Diffusion Model include sudden price jumps along
with regular price changes to handle unexpected events better.

14 Summary and My Learning Journey

14.1 The Black–Scholes–Merton Adventure

It’s been an incredible journey going through the Black–Scholes model! Let me try and
break it down

• It all started with stochastic processes. I remember feeling a bit overwhelmed
at first, but it’s fascinating how randomness can be modeled mathematically!

• Then came Geometric Brownian Motion (GBM). Learning how this describes
stock prices was a real ”wow!” moment for me. It’s amazing how a simple equation
can capture the unpredictability of the market.

• Ito’s Lemma was a tough nut to crack. But once I saw it applied to option pricing,
it clicked! It’s like a special rule for dealing with randomness in calculus.

• The concept of Risk-Neutral Valuation is so intuitive. The idea that we can
price options as if everyone is risk neutral is so counterintuitive, yet so useful!

• Deriving the Black Scholes Partial Differential Equation (PDE) felt like
putting together a complex puzzle. Each piece – from Ito’s Lemma to the risk-free
portfolio – came together beautifully.

• The Heat Equation analogy was a game changer for me. Seeing how option
pricing relates to heat diffusion in physics made the math feel more tangible and
less abstract.

• Finally, arriving at the closed form solution was like reaching the summit of a
mountain. After all the complex derivations, seeing that elegant formula for option
pricing felt truly rewarding!
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14.2 The Beauty of Black Scholes

What makes this model so impressive to me:

• The formula’s simplicity and elegance are astounding. With just a few inputs,
we can price options – it feels like a treasure!

• I’m in awe of how this model became the cornerstone of modern financial
theory. It’s not just about option pricing; it’s changed how we think about risk
and valuation in finance.

• The Greeks (Delta, Gamma, Vega, etc.) derived from the model provide such
powerful tools for risk management. It’s like having a financial GPS.

• Learning about how the model led to the growth of derivatives markets has given
me a new perspective on financial innovation.

14.3 Recognizing the Limitations

As I delved deeper, I began to see where the model falls short:

• The assumption of constant volatility now seems oversimplified to me. Real
markets are much more dynamic.

• Ignoring transaction costs and assuming continuous trading are idealistic. I
can see how these assumptions could lead to practical issues in real trading.

• The model’s struggle with extreme events or sudden jumps in prices is a signif-
icant limitation. It’s made me realize how important it is to consider ”black swan”
events in finance.

• Learning about volatility smiles and skews in real options markets was eye-
opening. It showed me how market participants adjust for the model’s shortcom-
ings.

14.4 Practical Applications and Adjustments

Despite its limitations, I’ve learned that the Black–Scholes model is still widely used:

• The concept of implied volatility fascinates me. It’s clever how traders use it to
reverse-engineer market prices and adjust the model.

• I find it interesting how the model serves as a common language in the financial
world, even when more complex models are used behind the scenes.

• Learning about how the model is adapted for different assets (like currencies or
commodities) showed me its versatility.

18



Aurokrishnaa R.L A Rigorous Exploration of the Black-Scholes-Merton Model:

14.5 My Future Explorations

This journey has sparked my curiosity for further learning:

• I’m excited to dive into more advanced models like stochastic volatility and
jump-diffusion models. The Heston model, in particular, sounds intriguing!

• Exploring numerical methods for option pricing is next on my list. I’m keen
to understand how Monte Carlo simulations and finite difference methods work in
practice.

• I’d love to get hands-on experience with model calibration using real market
data. It seems like a great way to bridge theory and practice.

• The world of exotic options and how they’re priced is another area I’m eager to
explore. It seems like a field where creativity in finance really shines.

14.6 Reflecting on My Black–Scholes Journey

This deep dive into the Black–Scholes model has been more than just learning a formula;
it’s opened up a whole new way of thinking about finance for me. From grappling with
stochastic calculus to understanding the nuances of option pricing, each step has been
challenging yet incredibly rewarding.

I’m amazed at how a single model can have such a profound impact on an entire field.
It’s not just about the mathematics – it’s about how we conceptualize risk, value, and
the nature of financial markets.

As I look back on this journey, I feel a sense of accomplishment mixed with excitement
for what’s to come. The Black–Scholes model has given me a solid foundation, but I now
see it as a starting point for exploring even more complex and fascinating areas of financial
mathematics.

I can’t wait to apply these concepts in real-world scenarios and continue expanding
my knowledge. This journey has reinforced my passion for finance and mathematics, and
I’m thrilled about the possibilities that lie ahead in my studies and future career!
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